

Course Description

COP1332 | Introduction to Visual Basic Programming | 4.00 credits

This course introduces computer science and non-major students to fundamental programming skills using the visual basic integrated development environment. Students will learn program design, the fundamentals of event driven object-oriented programming, arrays, validation of user input, and how to create menu driven programs and multiple form applications.

Course Competencies:

Competency 1: The student will demonstrate knowledge of visual programming by:

- 1. Creating a visual program to solve a problem
- 2. Interpreting a series of instructions used in a visual program
- 3. Identifying the basic structures of the program (sequence, decision, and repetition)

Competency 2: The student will demonstrate knowledge of program design by:

- 1. Describing the different program development tools
- 2. Creating the design for a program using the development tools. 3. Modifying the design for an existing program

Competency 3: The student will apply and synthesize knowledge of user interface design by:

- 1. Describing the difference between a console program and a Graphical User Interface (GUI)
- 2. Creating a console program
- 3. Modifying existing user interfaces in sample programming projects
- 4. Creating a GUI incorporating good design principles for a programming project
- 5. Using the following GUI components in assignments: buttons, labels, text boxes, dialogs, picture boxes, check boxes, radio buttons, group boxes and list or combo boxes

Competency 4: The student will demonstrate understanding and application of a modern Integrated Development Environment (IDE) by:

- 1. Describing the major components of an IDE and their functions
- 2. Examining, creating, and debugging programming projects using an IDE

Competency 5: The student will demonstrate knowledge of fundamental computer program components by:

- Identifying the fundamental components of computer programs, including variables, data types, control structures, and functions, to establish a foundational understanding of programming concepts and structures
- 2. Analyzing the relationships and interactions among fundamental program components to comprehend their roles in program execution and data manipulation
- 3. Applying the knowledge of fundamental program components to create simple programs and solve basic computational problems, demonstrating practical understanding and proficiency

Competency 6: The student will demonstrate knowledge of data types by:

- 1. Explaining the appropriate use of each of the following fundamental data types: Integer, Single, Double, String, and Boolean
- 2. Explaining the properties of a variable, such as its name, value, scope, persistence, and size
- 3. Identifying and using variables appropriately within programming projects
- 4. Using explicit type conversions in programming projects
- 5. Explaining the form and uses of array variables
- 6. Creating and using array variables within programming projects

Competency 7: The student will demonstrate the ability to analyze fundamental computer programming constructs by:

- 1. Creating programs using control structures and functions
- 2. Incorporating each of the following programming constructs into programming projects: sequential processing;

Updated: Fall 2025

- counted, pre-test and post-test iteration (for next, do while, loop until); and simple and complex selection structures (if, if-else, nested-ifs, select case)
- 3. Creating programs using function, method, and procedure calls within programming projects
- 4. Creating programs that respond to user-generated events
- 5. Validating user input from text boxes
- 6. Controlling user action during the execution of a program using the Enable/Disable feature of an object

Competency 8: The student will demonstrate the ability to analyze fundamental computer programming operations by:

- 1. Using mathematical operators within programming projects
- 2. Using relational operators within programming projects
- 3. Using logical (Boolean) operators within programming projects
- 4. Using string manipulation functions and methods
- 5. Using intrinsic functions and/or methods for type conversion and mathematical operations

Competency 9: The student will demonstrate the ability to analyze advanced user interface design by:

- 1. Evaluating the effectiveness of advanced user interface design elements, such as navigation, visual hierarchy, and interactive components, to assess their impact on user experience and usability
- 2. Comparing and contrasting advanced user interface designs across different platforms and applications to identify emerging trends and best practices in the field
- 3. Critiquing advanced user interface designs based on principles of human-computer interaction and usercentered design, providing constructive feedback and recommendations for improvement

Competency 10: The student will demonstrate the ability to analyze program development and maintenance processes by:

- 1. Applying functional decomposition techniques to break a programming design problem into smaller pieces
- 2. Using diagrams and/or other design documents to illustrate the design of a programming solution
- 3. Using diagrams and/or pseudocode to explain the detailed design of a method, procedure, or function.
- 4. Comparing and contrasting source code and executable results
- 5. Documenting code following industry standard practices and procedures

Competency 11: The student will demonstrate the ability to synthesize knowledge of fundamental computer programming by:

- 1. Designing event-driven, object-oriented programs that use fundamental programming constructs
- 2. Implementing event-driven, object-oriented programs that use fundamental programming constructs
- 3. Testing event-driven, object-oriented programs that use fundamental programming constructs
- 4. Debugging event-driven, object-oriented programs that use fundamental programming constructs

Competency 12: The student will demonstrate industry best practices by:

- 1. Participating as a member of a collaborative team
- 2. Researching and reviewing professional sources of information and presenting findings orally, in writing, and/or with a slide presentation

Learning Outcomes:

- Solve problems using critical and creative thinking and scientific reasoning.
- Demonstrate knowledge of ethical thinking and its application to issues in society
- Use computer and emerging technologies effectively

Updated: Fall 2025